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Abstract: Natural spring cell substitutes of triangular and tetrahedral finite elements at constant strain take ad-
vantage of a formalism oriented along the element sides/edges. Two different models in use account just for the
diagonal entities of either the flexibility matrix of the element or of its stiffness matrix. Both are incomplete sub-
stitutes, and defective to a degree depending on the significance of the off-diagonal parts of the element matrices.
The present work discusses an iterative completeness of the substitution accounting for the discarded parts by ad-
ditives to the spring members of the cell. In this connection, the iteration schemes are set up for either model at the
material and at the element level, and convergence criteria are defined in terms of the spectral radii of the iteration
operators. The convergence regions are confined for triangular elements, and are demonstrated with reference to a
casestudy.
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1 Introduction

The natural setup of simplex finite elements, the tri-
angle and the tetrahedron at constant strain, refers to
static and kinematic quantities defined along the sides
and the edges of the element [1]. A simple transi-
tion to the spring cell assigns either the diagonal en-
tities of the flexibility matrix of the elastic element
or those of the stiffness matrix to the springs, or bar
members, that build the cell [2], [3]. Both approaches
lead to defective substitutes of the finite element ex-
cept for the ideal constellation of the regular triangle
of a material with the coefficient of lateral contraction
ν = 1/3. A certain superiority of the flexibility con-
cept experienced in computations [4, 5] has been sup-
ported also theoretically [6]. Beyond isotropic elastic-
ity, anisotropy is discussed in [3] and the implication
of plasticity in [5], [7].

Other cell models assembled of pin-joined bars
prove similarly deficient [8]. Complete representation
of the continuum finite element by additional vari-
ables [9, 10] deviates from the pin-joined bar con-
cept. The present account discusses completeness of
the substitution without leaving the concept of the
pin-joined bars. Thereby the bars are enriched by
additional displacements or forces which account for
the discarded off-diagonal parts of the flexibility- and
the stiffness matrix of the finite element. The result-

ing implicit forms are interpreted as iterative solution
schemes for force and displacement. Their conver-
gence properties are investigated at the element level
and at the local, constitutive level of stress and strain.
In this connection, convergence criteria are defined
for the iteration at given stress, and at given strain,
which may be associated with the limiting cases of ei-
ther static or kinematic determinacy of the structure.

Details are elaborated for triangular configura-
tions. Thereby the range of convergence is shown as
a function of the element shape and allows an assess-
ment of the different iteration schemes. The theoret-
ical exposition is complemented by a numerical ex-
ample which demonstrates the relevance of the formal
prediction. The last step is to the structural assem-
bly. As a rule the finite element solution is for the
displacement, which is attempted by iteration of the
complete spring cell substitute. A sufficient condition
for convergence brings back to the element level and
indicates an inferiority of the flexibility cell due to the
displacement based solution algorithm for the system.

Section 2 recalls the transition from the natural fi-
nite element to the spring cell, introduces the splitting
of the element matrices in diagonal- and off-diagonal
parts and defines the cell supplements that complete
the substitution of the finite element. Section 3 is con-
cerned with the iterative solution in the stiffness con-
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Figure 1: Tetrahedral finite element and skeletal
spring cell. Definition of natural quantities.

text and defines convergence criteria at the element-
and at the material level, while Section 4 deals with
the subject from the flexibility point of view. Section
5 focuses on triangular configurations and estimates
the range of convergence in dependence of the shape
for each one of the iterative schemes, and Section 6
demonstrates the procedures by a numerical example.
Section 7 is concerned with the discretized structure
regarding the iterative solution for the displacements
and the assessment of convergence. Section 8 summa-
rizes the essential issues of the account and points out
the main results.

2 From the natural finite element to
the spring cell

The finite elements considered in the present context
are the constant strain tetrahedron and the plane tri-
angle [1]. The lines connecting nodal points specify
the natural directions where relevant quantities are re-
ferred to (Fig 1). Quantities defined along the natural
directions are denoted either total or component. The
lengths of the connecting lines are arranged as the di-
agonal matrix l = �lϑ�, triangle: ϑ = α, β, γ tetrahe-
dron: ϑ = α, · · · , ζ . Elongations define the total dis-
placements collected in the vector array ut = {uϑ

t },
the unit elongations are the total strains in εt = {εϑ

t }
such that

εt = l−1ut. (1)

The corresponding forces acting at the nodal
points along the natural directions are collected in the
vector array Sc = {Sϑ

c }. They result from imposed
component stresses in σc = {σϑ

c } and vice versa.
Work equivalence relates force and stress

Sc = V l−1σc ⇐ Aσc. (2)

The first expression refers to the finite element of vol-
ume V . The transition to the second expression leads
to a cell built of bars between the nodal points. These
carry individually the stress σc that acts on the cross-
section areas defined in the diagonal matrix

A = �Aϑ� =
⌈
V

lϑ

⌋
= V l−1. (3)

In linear elasticity the relationship between the
stress σc and the strain εt is stated as

σc = κNεt, (4)

where κN is denoted the natural stiffness matrix of
the elastic material. With this eqn (2) for the finite
element becomes

Sc = kNut ⇐ kDut + Jk, (5)

where the stiffness matrix of the element

kN = V l−1κNl−1 ⇐ kD + k−, (6)

has been partitioned such that kD refers to the diag-
onal of the element stiffness matrix. The part k− =
kN − kD denotes the remaining off-diagonal matrix
which in eqn (5) gives rise to the term

Jk = k−ut. (7)

The transition to the cell as indicated on the right-hand
side of eqn (5) is for elastic bars pin-joined at the
nodal points. Their elastic response is described by
the diagonal kD of the element stiffness matrix, while
the off-diagonal terms of the matrix are accounted for
by the supplementary forces Jk.

The natural flexibility matrix φN of the elastic
material relates the strain εt with the stress σc.

εt = φNσc. (8)

Substitution in eqn (1) and with the stress from
eqn (2), gives the elongations in terms of forces

ut = fNSc ⇐ fDSc + hf , (9)

where the flexibility matrix of the element has been
partitioned for the transition to the cell

fN =
1
V

lφNl ⇐ fD + f−. (10)

The first expression in eqn (9) refers to the finite ele-
ment. In the cell form on the right-hand side the di-
agonal of the flexibility matrix relates the elongations
of the bar members of the cell with the forces, and the
supplement

hf = f−Sc, (11)
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accounts for the off-diagonal part of the matrix, which
completes the substitution.

Equation (5) introduces the stiffness approach to
the spring cell, and eqn (9) introduces the flexibility
approach. The symbolism applies to the two- and the
three-dimensional element with the content adapted.
As long as the transition to the spring cell is based on
the diagonal of the element matrices, either concept
offers an incomplete substitution [2]. The following
discusses completeness by an iterative incorporation
of the off-diagonal parts of the element matrices.

3 Iterative stiffness method

3.1 The finite element cycle
The partitioned eqn (5) substitutes the finite element
by a cell assembled of elastic bars pin-joined at the
nodal points. The elastic bars cover the diagonal kD

of the element stiffness matrix, and supplementary
forces Jk = k−ut complete the substitution.

In the finite element statement of the structural
problem, both the element forces and the displace-
ments are unknown quantities. In the following, two
limiting cases will treated on the element and on the
local material level: the case of prescribed displace-
ment and the case of imposed stress. If the displace-
ment ut is prescribed, eqn (5) can be evaluated for the
force. In case that the force Sc is imposed, on the other
hand, the cell variant of eqn (5) along with eqn (7) for
the supplement enter an iterative solution scheme for
the displacement

ut,i+1 = k−1
D (Sc − k−ut,i). (12)

Regarding consecutive iteration cycles

(δut)i+1 = −k−1
D k−(δut)i, (13)

where

(δut)i+1 = ut,i+1 − ut,i,

(δut)i = ut,i − ut,i−1. (14)

Taking norms,

‖(δut)i+1‖ = ‖k−1
D k−(δut)i‖

≤ ‖k−1
D k−‖‖(δut)i‖, (15)

which suggests to state the convergence condition as

ωku = ‖k−1
D k−‖ (16)

= max
√

λ[(k−1
D k−)t(k−1

D k−)] < 1,

where λ[· · ·] denotes eigenvalues of the matrix prod-
uct within the parentheses.
The above defines the spectral norm ωku, the maxi-
mum singular value of the iteration matrix in eqn (13)
as a criterion for convergence. This quantity will serve
as a convergence indicator.

The force supplement, eqn (7), can be expressed
in terms of the stress resultants Sc using eqn (5) for
the finite element

Jk = k−k−1
N Sc. (17)

Imposed force determines then the supplement and the
displacement can be computed directly. In the case of
prescribed displacement the solution for the unknown
force Sc in the cell is attempted iteratively

Sc,i+1 = kDut + k−k−1
N Sc,i. (18)

For consecutive iteration cycles

(δSc)i+1 = k−k−1
N (δSc)i. (19)

Norms are related as

‖(δSc)i+1‖ = ‖k−k−1
N (δSc)i‖

≤ ‖k−k−1
N ‖‖(δSc)i‖, (20)

and for convergence

ωkS = ‖k−k−1
N ‖ (21)

= max
√

λ[(k−k−1
N )t(k−k−1

N )] < 1.

Schemes that are a direct consequence of the par-
titioning as in eqn (12) will be denoted primary, those
deduced as in eqn (18) will be secondary.

3.2 The local level
Inspection of eqn (6) reveals that partitioning involves
essentially the diagonal and off-diagonal constituents
of the material stiffness matrix

κN ⇐ κD + κ−. (22)

Thereby the relationship between natural stress and
strain transfers from the continuum to the cell mem-
bers

σc = κNεt ⇐ κDεt + τκ. (23)

The stress supplement

τκ = κ−εt, (24)

depends on the strain which eventually determines the
stress. If instead the stress is imposed, the cell variant
in eqn (23) is solved iteratively for the strain:

εt,i+1 = κ−1
D (σc − κ−εt,i). (25)
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Changes between consecutive cycles are related as

(δεt)i+1 = −κ−1
D κ−(δεt)i. (26)

Following previous arguments, convergence of norms
is ensured if

ωκε = ‖κ−1
D κ−‖ (27)

= max
√

λ[(κ−1
D κ−)t(κ−1

D κ−)] < 1.

In case that the stress supplement in eqn (23) is
expressed in the form

τκ = κ−κ−1
N σc, (28)

knowledge of σc determines the strain in the cell con-
text. At imposed strain the stress is approached itera-
tively

σc,i+1 = κDεt + κ−κ−1
N σc,i, (29)

and

(δσc)i+1 = κ−κ−1
N (δσc)i. (30)

The requirement for convergence is

ωκσ = ‖κ−κ−1
N ‖ (31)

= max
√

λ[(κ−κ−1
N )t(κ−κ−1

N )] < 1.

4 Iterative flexibility method

4.1 The finite element cycle
In the cell variant of eqn (9) imposed forces Sc de-
termine the displacement ut while at prescribed dis-
placements the forces are computed iteratively. In
conjunction with eqn (11),

Sc,i+1 = f−1
D (ut − f−Sc,i). (32)

For consecutive iteration cycles

(δSc)i+1 = −f−1
D f−(δSc)i. (33)

The norm

‖(δSc)i+1‖ = ‖f−1
D f−(δSc)i‖

≤ ‖f−1
D f−‖‖(δSc)i‖, (34)

diminishes as long as

ωfS = ‖f−1
D f−‖ (35)

= max
√

λ[(f−1
D f−)t(f−1

D f−)] < 1.

A secondary scheme is obtained by expressing the
supplement, eqn (11), in terms of the displacement

hf = f−f−1
N ut, (36)

which determines the force in the cell members. If the
force is imposed eqn (9) is solved iteratively for the
displacement

ut,i+1 = fDSc + f−f−1
N ut,i, (37)

and the difference between cycles progresses as

(δut)i+1 = f−f−1
N (δut)i. (38)

The norm,

‖(δut)i+1‖ = ‖f−f−1
N (δut)i‖

≤ ‖f−f−1
N ‖‖(δut)i‖, (39)

diminishes as long as

ωfu = ‖f−f−1
N ‖ (40)

= max
√

λ[(f−f−1
N )t(f−f−1

N )] < 1.

4.2 The local level
The partitioned element flexibility matrix in eqn (10)
reflects the diagonal and off-diagonal constituents of
the material flexibility matrix

φN ⇐ φD + φ−. (41)

This transfers the relationship between natural stress
and strain from the continuum to the spring cell

εt = φNσc ⇐ φDσc + ηφ, (42)

where the elastic response of the cell members has
been supplemented by the strain

ηφ = φ−σc (43)

to complete the substitution of the continuum.
Equation (42) computes the strain for given stress.

At prescribed strain the stress is approached itera-
tively

σc,i+1 = φ−1
D (εt − φ−σc,i). (44)

Changes between consecutive cycles

(δσc)i+1 = −φ−1
D φ−(δσc)i, (45)

should diminish if

ωφσ = ‖λ(φ−1
D φ−)‖ (46)

= max
√

λ[(φ−1
D φ−)t(φ−1

D φ−)] < 1.
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Figure 2: Geometry of triangular element.

A secondary scheme derives by expressing the
supplement ηφ, eqn (43), in terms of the strain

ηφ = φ−φ−1
N εt. (47)

Then at given strain the stress is determined directly
in the cell context, while solution for the strain when
the stress is imposed implies iteration

εt,i+1 = φDσc + φ−φ−1
N εt,i. (48)

The norm of the difference

(δεt)i+1 = φ−φ−1
N (δεt)i, (49)

diminishes for

ωφε = ‖λ(φ−φ−1
N )‖ (50)

= max
√

λ[(φ−φ−1
N )t(φ−φ−1

N )] < 1.

5 The triangular element
The general formalism is detailed for triangular con-
figurations. Essentials of the description in [2] are re-
called for completeness.

5.1 Stress and strain
The flexibility and the stiffness matrices of the elas-
tic material are needed. The natural flexibility matrix
pertaining to the triangle, Fig 2, reads,

φN =

1
E

⎡
⎢⎣ 1 cos2 γ − ν sin2 γ cos2 β − ν sin2 β

1 cos2 α − ν sin2 α
sym 1

⎤
⎥⎦

= 1
E

⎡
⎢⎣ 1 c b

1 a
sym 1

⎤
⎥⎦ . (51)

The abbreviations

c = (cos2 γ − ν sin2 γ),
b = (cos2 β − ν sin2 β),
a = (cos2 α − ν sin2 α), (52)

help shorten subsequent expressions. Inversion com-
putes the material stiffness matrix

κN = φ−1
N = (53)

=
E

Det

⎡
⎢⎣ 1 − a2 ab − c ac − b

1 − b2 bc − a
sym 1 − c2

⎤
⎥⎦ ,

with the determinant

Det = |EφN| = 1 − (a2 + b2 + c2) + 2abc. (54)

The operators of the iteration schemes are set
up next. In the flexibility method the stress loop,
eqn (44), is operated with the matrix

φ−1
D φ− =

φ−1
D φN − I =

⎡
⎢⎣ 0 c b

0 a
sym 0

⎤
⎥⎦ , (55)

where I stands for the unity matrix and φ−1
D = EI.

For the strain loop, eqn (48),

φ−φ−1
N = I − φDφ−1

N =
−1
Det

× (56)

⎡
⎣ b2 + c2 − 2abc ab − c ac − b

c2 + a2 − 2abc bc − a
sym a2 + b2 − 2abc

⎤
⎦.

With this the convergence indicators ωφσ for the stress
loop, eqn (46), and ωφε for the strain loop, eqn (50),
are computed in dependence of the shape of the tri-
angle. Isolines are displayed in Fig 3; the region of
convergence extends from the regular triangle and is
limited by the unity line.

In the stiffness method, the strain loop, eqn (25),
is operated with the matrix

κ−1
D κ− = κ−1

D κN − I (57)

=

⎡
⎢⎣

0 ab−c
1−a2

ac−b
1−a2

ab−c
1−b2

0 bc−a
1−b2

ac−b
1−c2

bc−a
1−c2

0

⎤
⎥⎦ .

The stress in the loop of eqn (29) is transferred by the
matrix

κ−κ−1
N = I − κDκ−1

N =
−1
Det

× (58)

⎡
⎣ b2 + c2 − 2abc (1 − a2)c (1 − a2)b

(1 − b2)c c2 + a2 − 2abc (1 − b2)a
(1 − c2)b (1 − c2)a a2 + b2 − 2abc

⎤
⎦.
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Figure 3: Isolines of the convergence indicators for
varying triangular shape in the material flexibility
context. Left: Iteration of stress (ωφσ). Right: Iter-
ation of strain (ωφε).

Figure 4: Isolines of the onvergence indicators for
varying triangular shape in the material stiffness con-
text. Left: Iteration of stress (ωκσ). Right: Iteration of
strain (ωκε).

The non-symmetric matrices enter the determina-
tion of the convergence indicators ωκε for the strain
loop, eqn (27), and ωκσ for the stress loop, eqn (31).
Figure 4 displays isolines confining the region of con-
vergence in dependence of the shape of the triangle.

It may be observed that the modulus of elasticity
does not enter none of the iteration operators. It does
not affect the convergence behaviour in contrast to the
coefficient of lateral contraction. The latter is set to
ν = 1/3 in all numerical evaluations.

5.2 Displacement and force
The stiffness- and flexibility matrices of the elastic
material enter the operators of the finite element
iteration.

The flexibility method: The solution for the
force Sc at fixed displacement ut follows the scheme
of eqn (32). On consideration of eqn (10) for the

finite element the pertaining operator is

f−1
D f− = (V l−1φ−1

D l−1)(V −1lφ−l)

= l−1φ−1
D φ−l. (59)

The core of the expression is given for the triangle by
eqn (55) and with the trigonometric relation for the
lengths

l =

⎡
⎢⎢⎢⎢

lα
lβ
lγ

⎥⎥⎥⎥⎦ = 2R

⎡
⎢⎢⎢⎢

sin α
sin β
sin γ

⎥⎥⎥⎥⎦ , (60)

the operator is obtained as

f−1
D f− =

⎡
⎢⎣

0 c sin β
sin α b sinγ

sinα

c sinα
sin β 0 a sin γ

sin β

b sinα
sinγ a sinβ

sin γ 0

⎤
⎥⎦ . (61)

It is noted that eventually neither the element volume
V nor the circumscribing radius R appear. The itera-
tion operator depends solely on the shape of the trian-
gle and on the coefficient of lateral contraction. This
proves true for what follows as well.

The solution for the displacement ut at fixed force
Sc follows the scheme of eqn (37). The progress of the
iteration is governed by the matrix

f−f−1
N = (V −1lφ−l)(V l−1φ−1

N l−1)

= lφ−φ−1
N l−1. (62)

With the core from eqn (56) the operator becomes

f−f−1
N =

−1
Det

× (63)

⎡
⎢⎣

b2 + c2 − 2abc (ab − c) sin α
sin β (ac − b) sin α

sin γ

(ab − c) sin β
sin α c2 + a2 − 2abc (bc − a) sin β

sin γ

(ac − b) sin γ
sin α (bc − a) sin γ

sin β a2 + b2 − 2abc

⎤
⎥⎦.

The matrices in eqn (61) and eqn (63) determine
the convergence indicators ωfS for the force loop,
eqn (35), and ωfu for the displacement loop, eqn (40).
Isolines are displayed in Fig 5.

The stiffness method: The displacement ut at
fixed force Sc is approached by the recursive scheme
of eqn (12). With reference to eqn (6) for the element
stiffness the iteration matrix is

k−1
D k− = (V −1lκ−1

D l)(V l−1κ−l−1)

= lκ−1
D κ−l−1. (64)
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Figure 5: Isolines of the convergence indicators for
varying triangular shape in the element flexibility con-
text. Left: Iteration of force (ωfS). Right: Iteration of
displacement (ωfu).

The core of the expression is given for the triangle in
eqn (57), and with eqn (60) for the side lengths,

k−1
D k− =

⎡
⎢⎣

0 ab−c
1−a2

sinα
sinβ

ac−b
1−a2

sinα
sinγ

ab−c
1−b2

sinβ
sinα 0 bc−a

1−b2
sin β
sin γ

ac−b
1−c2

sinγ
sinα

bc−a
1−c2

sinγ
sinβ 0

⎤
⎥⎦ . (65)

The force Sc at constant displacement ut,
eqn (18), is iterated with the matrix

k−k−1
N = (V l−1κ−l−1)(V −1lκ−1

N l)

= l−1κ−κ−1
N l. (66)

With eqn (58) the operator matrix becomes

k−k−1
N =

−1
Det

× (67)

⎡
⎢⎣ b2 + c2 − 2abc (1 − a2)c sin β

sin α (1 − a2)b sin γ
sin α

(1 − b2)c sin α
sin β c2 + a2 − 2abc (1 − b2)a sin γ

sin β

(1 − c2)b sin α
sin γ (1 − c2)a sin β

sin γ a2 + b2 − 2abc

⎤
⎥⎦.

The convergence indicator ωku for the displace-
ment loop is determined by eqn (16), and ωkS for the
force loop by eqn (21). Figure 6 displays isolines.

5.3 Discussion
The number of iterations for completing substitution
depends on the shape of the element. It increases from
zero at the ideal configuration of the regular trian-
gle up to divergent solutions beyond the convergence
limit. The latter depends on the cell concept and on
the problem to solve.

Inspection of the displayed distribution of the
convergence indicators shows a larger region for the
primary operators emanating directly from the parti-
tioning of the material constitutive matrices. In the

Figure 6: Isolines of the convergence indicators for
varying triangular shape in the element stiffness con-
text. Left: Iteration of force (ωkS). Right: Iteration of
displacement (ωku).

flexibility context, Fig 3, this applies to the iteration
of the stress, eqn (44), as contrasted to the iteration
of the strain, eqn (48). Analogously in the stiffness
context, Fig 4, the strain iteration, eqn (25), covers
tiangular shapes to a larger extent than the iteration of
the stress, eqn (29). Comparison of Fig 4 and Fig 3 in-
dicates a superiority of the flexibility concept against
the stiffness concept when comparing different condi-
tions: straining in the former with stressing in the lat-
ter. The secondary, deduced variants of the two con-
cepts are close to each other.

It is worth relating the convergence indicators
with the eigenvalues of the loop operators on the
grounds of matrix theory [11]. The eigenvalues of the
flexibility matrix under exclusion of the elastic modu-
lus are obtained from the characteristic equation

|EφN − λI| = (68)

(1 − λ)3 − (a2 + b2 + c2)(1 − λ) + 2abc = 0.

With the solution λ = λ(EφN) the eigenvalues of
other participating matrices can be deduced. For the
stiffness matrix by inversion,

λ

(
1
E

κN

)
= λ[(EφN)−1] =

1
λ(EφN)

. (69)

Attention now is paid to the iteration schemes. In
the flexibility method the operator matrix of the stress
loop, eqn (55), is symmetric with eigenvalues

λ(φ−1
D φ−) = λ(EφN) − 1. (70)

For the strain loop, eqn (56),

λ(φ−φ−1
N ) = 1 − 1

λ(EφN)
. (71)
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Equations (71) and (70) have in common the eigen-
value λ(EφN). Eliminating,

λ(φ−φ−1
N ) =

λ(φ−1
D φ−)

1 + λ(φ−1
D φ−)

. (72)

For the symmetric operators of the flexibility pro-
cedures the spectral norm equals the spectral radius,
such that the convergence indicators by eqn (46) and
eqn (50) are identified as

ωφσ = max |λ(φ−1
D φ−)| = max |λ(EφN) − 1|, (73)

and

ωφε = max |λ(φ−φ−1
N )| = max

∣∣∣∣1 − 1
λ(EφN)

∣∣∣∣ . (74)

The stiffness procedures are operated with the non-
symmetric matrices of eqn (57) and eqn (58). In this
case the spectral norms, the convergence indicators of
eqn (27) and eqn (31), satisfy the inequalities

ωκε > max |λ(κ−1
D κ−)|. (75)

and

ωκσ > max |λ(κ−κ−1
N )|, (76)

The transition to the finite element does not have
a dramatic effect. The eigenvalues of the finite ele-
ment matrices and of the material matrices are equal.
With reference to eqns (59) and (62) in the flexibility
context

λ(f−1
D f−) = λ(l−1φ−1

D φ−l) = λ(φ−1
D φ−),

λ(f−f−1
N ) = λ(lφ−φ−1

N l−1) = λ(φ−φ−1
N ). (77)

From eqns (64) and (66) for the stiffness operators

λ(k−1
D k−) = λ(lκ−1

D κ−l−1) = λ(κ−1
D κ−),

λ(k−k−1
N ) = λ(l−1κ−κ−1

N l) = λ(κ−κ−1
N ). (78)

Since the flexibility operators for the element are non-
symmetric, from eqns (35) and (40),

ωfS > max |λ(f−1
D f−)| = max |λ(φ−1

D φ−)|,
ωfu > max |λ(f−f−1

N )| = max |λ(φ−φN
−1)|. (79)

Comparison with eqns (73) and (74) predicts a re-
duced region of convergence for the element:

ωfS > ωφσ,

ωfu > ωφε. (80)

For the convergence indicators of the stiffness proce-
dure, eqns (16) and (21), one obtains

ωku > max |λ(k−1
D k−)| = max |λ(κ−1

D κ−)|,
λkS > max |λ(k−k−1

N )| = max |λ(κ−κ−1
N )|, (81)

which compares with eqns (75) and (76).
As seen from Fig 5 and Fig 6 the convergence re-

gion for the primarily partitioned element operators
shrinks with respect to the material level, Fig 3 and
Fig 4. That for the secondary, deduced schemes re-
mains almost unaffected; the overall tendency similar.
The above discussion on the plane triangle transfers
equally to the tetrahedral element.

6 Numerical demonstration

6.1 Preliminaries
6.1.1 Geometry and loading

The theory is implemented for a triangle with

α = 90◦, β = 60◦, γ = 30◦. (82)

This configuration comprises convergent solutions
near the limit and shows the divergence experienced
beyond it.

Evaluation of eqn (51) and eqn (53) for ν = 1/3,
E = 1 specifies the flexibility matrix and the stiffness
matrix of the elastic material:

φN =

⎡
⎢⎣ 1 2

3 0
1 −1

3
sym 1

⎤
⎥⎦ , (83)

with eigenvalues

λ(φN) =

⎧⎪⎨
⎪⎩

1 +
√

5
3 = 1.745

1
1 −

√
5

3 = 0.255
, (84)

and

κN =

⎡
⎢⎣ 2 −3

2 −1
2

9
4

3
4

sym 5
4

⎤
⎥⎦ , (85)

with the eigenvalues obtained by inversion

λ(κN) = λ−1(φN) =

⎧⎪⎨
⎪⎩

3
3−√

5
= 3.927
1

3
3+

√
5

= 0.573
. (86)

The numerical procedure is carried out for a state
of shear stress σ12 =

√
3 defined in the Cartesian
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reference system O–1, 2 with axes along the sides of
the triangle opposed to the angles β and γ. Stan-
dard transformation relates the stress components to
the natural ones⎡
⎢⎣ σ11

σ22

σ12

⎤
⎥⎦ =

⎡
⎢⎣

3
4 1 0
1
4 0 1√
3

4 0 0

⎤
⎥⎦

⎡
⎢⎣ σα

c

σβ
c

σγ
c

⎤
⎥⎦ =

⎡
⎢⎣ 0

0√
3

⎤
⎥⎦ . (87)

The entities in the transformation matrix stand for
cos(ϑ, i) cos(ϑ, j), ϑ = α, β, γ; i, j = 1, 2 according
to the indexing of the vector arrays. Inversion speci-
fies the natural equivalent of the Cartesian stress:

{σα
c σβ

c σγ
c } = {4 − 3 − 1}. (88)

The associated natural strain is computed with the ma-
terial flexibility matrix of eqn (83)

{εα
t εβ

t εγ
t } = {2 0 0}. (89)

Since geometrical dimensions do not affect the
convergence behaviour, the step to the finite element
is done with the unity values V = 1, 2R = 1, and the
side lengths from eqn (60) as in the diagonal matrix

l =

⌈
1
√

3
2

1
2

⌋
.

The forces Sc along the sides result from the stress in
eqn (88)

Sc = V l−1σc =

⎡
⎢⎣ Sα

c

Sβ
c

Sγ
c

⎤
⎥⎦ =

⎡
⎢⎣ 4

−2
√

3
−2

⎤
⎥⎦ , (90)

and the elongations ut are associated with the strain
in eqn (89)

ut = lεt =

⎡
⎢⎣

uα
t

uβ
t

uγ
t

⎤
⎥⎦ =

⎡
⎢⎣ 2

0
0

⎤
⎥⎦ . (91)

The flexibility matrix and the stiffness matrix re-
lating the above element quantities are

fN = lφNl =

⎡
⎢⎣ 1

√
3

3 0
3
4 −

√
3

12
sym 1

4

⎤
⎥⎦ , (92)

and

kN = l−1κNl−1 =

⎡
⎢⎣ 2 −√

3 −1
3

√
3

sym 5

⎤
⎥⎦ , (93)

with eigenvalues

λ(fN) = 1.472, 0.377, 0.150,

and by inversion in reverse order,

λ(kN) = 6.672, 2.649, 0.679.

6.1.2 Cell substitutes

Essentially, the two explicit spring cell substitutes of
the finite element are based on the diagonal entities
of the constitutive matrices of the elastic material: the
flexibility matrix, eqn (83), and the stiffness matrix,
eqn (85).

A measure regarding the coverage of the finite
element has been introduced in [6] as the Rayleigh
quotient defined by the elastic energy in the activated
units after standardization with the element volume,
the modulus of elasticity at fixed contraction coeffi-
cient and the magnitude of the action. Specifically,
with reference to the straining mode of eqn (89), the
quantities are:
For the finite element

(w̄N)ε =
εt

t

(
1
E κN

)
εt

εt
tεt

= 2, (94)

for the flexibility cell

(w̄f)ε =
εt

t(EφD)−1εt

εt
tεt

= 1 (95)

and for the stiffness cell

(w̄k)ε =
εt

t

(
1
E κ

D

)
εt

t

εt
tε

= 2. (96)

The values of the Rayleigh quotient lie within the
spectra of the involved matrices, and in the present
constellation of geometry and straining are seen to
favour the stiffness cell.

The stressing mode of eqn (88) gives
for the finite element

(w̄N)σ =
σt

c(EφN)σc

σt
cσc

= 0.308, (97)

for the flexibility cell

(w̄f)σ =
σt

c(EφD)σc

σt
cσc

= 1 (98)

and for the stiffness cell

(w̄k)σ =
σt

c

(
1
E κ

D

)−1
σc

σt
cσc

= 0.492. (99)

The values of the Rayleigh quotient computed in
terms of the stress confirm an apparent superiority of
the stiffness cell in reproducing the elastic energy of
the element as concluded before for the straining.
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6.2 The flexibility procedure
6.2.1 Stress and strain

The scheme of eqn (44) for the stress at fixed strain is
implemented with the actual data⎡
⎢⎣ σα

c

σβ
c

σγ
c

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 2

0
0

⎤
⎥⎦ −

⎡
⎢⎣ 0 2

3 0
2
3 0 −1

3
0 −1

3 0

⎤
⎥⎦

⎡
⎢⎣ σα

c

σβ
c

σγ
c

⎤
⎥⎦

i

.

(100)

The eigenvalues of the symmetric operator matrix ob-
tained with λ(φN) from eqn (84)

λ(φ−1
D φ−) = λ(φN) − 1 =

⎧⎪⎨
⎪⎩

√
5

3 = 0.745
0

−
√

5
3 = −0.745

,

(101)
determine the spectral norm to ωφσ = 0.745 < 1.
The solution is expected to converge. Figure 7 shows
the cycle deviation during the course of the iteration
process as the quotient of Euclidean norms

Δ =
‖σc,i+1 − σc,i‖
‖σc,i − σc,i−1‖ , (102)

and the variation of the relative error

ε =
‖σc − σc,i‖

‖σc‖ , (103)

where σc is the targeted stress of eqn (88). Contrast-
ing with the iterative solution after 15 cycles

σc,15 = {3.967 − 2.951 − 0.984},
σc = {4.000 − 3.000 − 1.000}.

The iteration scheme of eqn (48) for the strain at
the imposed stress becomes⎡
⎢⎣

εα
t

εβ
t

εγ
t

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 4

−3
−1

⎤
⎥⎦ +

⎡
⎢⎣ −1 3

2
1
2

3
2 −5

4 −3
4

1
2 −3

4 −1
4

⎤
⎥⎦

⎡
⎢⎣

εα
t

εβ
t

εγ
t

⎤
⎥⎦

i

.

(104)

The operation matrix is symmetric with eigenvalues
computed using those in eqn (84):

λ(φ−φ−1
N ) = 1 − 1

λ(φN)
=

⎧⎪⎪⎨
⎪⎪⎩

√
5

3+
√

5
= 0.427
0

−√
5

3−√
5

= −2.927
.

(105)
The spectral norm ωφε = 2.927 > 1, is indicative of
divergence. Figure 8 demonstrates.

Figure 7: Stress and force in the iterative flexibility
cell context. Difference quotient Δ at constant level,
diminishing error ε.

6.2.2 Force and displacement

The iterative scheme for the forces while the displace-
ment is fixed, eqn (32), is implemented as⎡
⎢⎣ Sα

c

Sβ
c

Sγ
c

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 2

0
0

⎤
⎥⎦ (106)

−

⎡
⎢⎢⎣

0
√

3
3 0

4
√

3
9 0 −

√
3

9

0 −
√

3
3 0

⎤
⎥⎥⎦

⎡
⎢⎣ Sα

c

Sβ
c

Sγ
c

⎤
⎥⎦

i

.

The spectral norm for the operator matrix amounts to

ωfS = 0.8165 > 0.745 = ωφσ,

which confirms eqn (80) and is still < 1 such that the
solution should converge. The result after 15 cycles
compares with the expected force:

Sc,15 = {3.967 − 3.408 − 1.967},
Sc = {4.000 − 3.464 − 2.000}.

Iteration for the displacement at fixed force is by
the scheme of eqn (37)⎡
⎢⎣ uα

t

uβ
t

uγ
t

⎤
⎥⎦

i+1

=

⎡
⎢⎣

4
−3

√
3

2
−1

2

⎤
⎥⎦ (107)

+

⎡
⎢⎣

−1
√

3 1
3
√

3
4 −5

4 −3
√

3
4

1
4 −

√
3

4 −1
4

⎤
⎥⎦

⎡
⎢⎣ uα

t

uβ
t

uγ
t

⎤
⎥⎦

i

.

The spectral norm of the operator matrix

ωfu = 3.168 > 2.927 = ωφε,

is indicative of divergence, Fig 8.
Figure 7 demonstrates the convergence of stress
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Figure 8: Strain and displacement in the iterative flex-
ibility cell context. Difference quotient Δ at constant
level, augmenting error ε.

and force in the flexibility context. Figure 8 refers
to the divergent behaviour of the kinematic quantities,
strain and displacement. In either case the difference
quotient of sequential iterates is seen close to the the-
oretical convergence indicator.

6.3 The stiffness procedure
6.3.1 Strain and stress

The iteration for the strain at given stress refers to
eqn (25). Actually,

⎡
⎢⎣

εα
t

εβ
t

εγ
t

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 2

−4
3

−4
5

⎤
⎥⎦ (108)

−
⎡
⎢⎣ 0 −3

4 −1
4

−2
3 0 1

3
−2

5
3
5 0

⎤
⎥⎦

⎡
⎢⎣ εα

t

εβ
t

εγ
t

⎤
⎥⎦

i

.

The spectral norm of the operator matrix

ωκε = 1.0625

affects convergence:

εt,15 = {2.721 − 0.734 − 0.725},
εt = {2.000 0.000 0.000}.

The stress at fixed strain is approached by the
scheme of eqn (29) as

⎡
⎢⎣ σα

c

σβ
c

σγ
tc

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 4

0
0

⎤
⎥⎦ (109)

+

⎡
⎢⎣ −1 −4

3 0
−3

2 −5
4

3
4

0 5
12 −1

4

⎤
⎥⎦

⎡
⎢⎣ σα

c

σβ
c

σγ
c

⎤
⎥⎦

i

.

Figure 9: Strain and displacement in the iterative stiff-
ness cell context. Difference quotient Δ and non-
diminishing error ε.

The spectral norm of the operator matrix

ωκσ = 2.6387,

excludes convergence.

6.3.2 Displacement and force

The scheme of eqn (12) is implemented for the dis-
placement at given force

⎡
⎢⎣

uα
t

uβ
t

uγ
t

⎤
⎥⎦

i+1

=

⎡
⎢⎣

2
−2

√
3

3
−2

5

⎤
⎥⎦ (110)

−

⎡
⎢⎢⎣

0 −
√

3
2 −1

2

−
√

3
3 0

√
3

3

−1
5

√
3

5 0

⎤
⎥⎥⎦

⎡
⎢⎣ uα

t

uβ
t

uγ
t

⎤
⎥⎦

i

.

The spectral norm of the operator matrix

ωku = 1.1219 > 1.0625 = ωκε,

is higher but not far from that of the material level.
Similarly, convergence is affected:

ut,15 = {2.721 0.636 0.3625},
ut = {2.000 0.000 0.0000}.

The solution for the force at fixed displacement is
by the scheme of eqn (18)⎡
⎢⎣ Sα

c

Sβ
c

Sγ
c

⎤
⎥⎦

i+1

=

⎡
⎢⎣ 4

0
0

⎤
⎥⎦ (111)

−

⎡
⎢⎢⎣

−1 −2
√

3
3 0

−√
3 −5

4

√
3

4

0 5
√

3
12 −1

4

⎤
⎥⎥⎦

⎡
⎢⎣ Sα

c

Sβ
c

Sγ
c

⎤
⎥⎦

i

.
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Figure 10: Stress and force in the iterative stiffness
cell context. Difference quotient Δ and augmenting
error ε.

In the above procedure the indicator

ωkS = 2.683.

predicts divergence.
Figure 9 shows a non-divergent behaviour for

strain and displacement in the stiffness context, and
the quotient of sequential iterates to be close to the
convergence criterion. Figure 10 refers to the di-
vergent behaviour of the static quantities, stress and
force.

7 The discretized structure
The finite element equations establish the equilibrium
between the stress resultants at the nodal points of
the discretization mesh arranged in the block-vector
array S = {Sn} and the forces P = {Pn} act-
ing at the same positions. The single vectors Sn,
Pn, n = 1, · · · , nop, at the nop nodal points are de-
fined by their components in a unique Cartesian refer-
ence system. The natural displacements of each of the
nel elements in {ute}, e = 1, · · · , nel derive from
the displacements u = {un} of the mesh nodal points.
Symbolically by the matrix operation

{ute} = atu. (112)

Virtual work equality relates the stress resultants in the
mesh to those of the elements collected in the vector
array {Sce}:

S = at
t{Sce}. (113)

The stress resultants Sce of the single element are ex-
pressed in terms of the displacements by the parti-
tioned eqn (5) along with eqn (7). Using eqn (112)
for the kinematics

S = (KD + K−)u, (114)

where the structural matrices are composed of the el-
emental ones as

KD = at
t�kDe�at, K− = at

t�k−e�at

K−u = at
t{(k−ut)e} = Jk. (115)

The matrix KD pertains to the cell assembly and K−
is the complement to the finite element representation
of the structure. The diagonal matrix �kDe� extends
over all elements as does the block-diagonal matrix
�k−e�. The vector Jk = {(k−ut)e} is set up with
element contributions, while the matrix K− is not
effective but serves the formal statement of the
iteration scheme.

Equating the nodal stress resultants from
eqn (114) with the applied forces and distinguishing
the spring cell assembly, establishes an iterative
solution scheme for the displacements founded on the
partitioned stiffness method. Formally,

KDui+1 = P − K−ui, (116)

Then for the propagation of differences between
consecutive iteration cycles by the stiffness cell,

KD(δu)i+1 = −K−(δu)i. (117)

Tracing back to the constituing elements allows the
statement of a sufficient condition for convergence.
To this end the assembly in eqn (117) is considered
resolved

at
t�kDe�{δute}i+1 = −at

t�k−e�{δute}i (118)

The equation is fulfilled if

kDe(δute)i+1 = −k−e(δute)i,
e = 1, · · · , nel, (119)

which points on eqn (13) for the individual element
and reveals the requirement of eqn (16) for all ele-
ments as a sufficient condition for convergence of the
assembly.

In the flexibility cell method the forces Sce for the
single element are obtained in terms of the displace-
ments ute by eqn (9) in conjunction with eqn (36)

Sce = (f−1
D − f−1

D f−f−1
N )eute

= (k̃D + k̃−)eute. (120)

The notation in the last expression stands for

k̃De = f−1
De

k̃−e = −(f−1
D f−f−1

N )e = f−1
Ne − f−1

De , (121)
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which identifies k̃De as the inverse diagonal of the el-
ement flexibility matrix, and k̃−e as the element stiff-
ness matrix diminished by the inverse diagonal of the
flexibility matrix.

Assembling for the discretized structure,

S = (K̃D + K̃−)u, (122)

which is formally as in eqn (114) but with the struc-
tural matrices composed of those elemental ones that
are defined in eqn (121). The matrix K̃D pertains to
the assembly of the flexibility based cells and K̃− is
the complement to the finite element representation of
the structure. Actually, the complementary terms in
eqn (116) and eqn (122) enter the computation as load
vectors assembled of element contributions avoiding
matrix multiplication at the structural level.

The iteration scheme for the displacements

K̃Dui+1 = P − K̃−ui, (123)

does not differ from the stiffness cell counterpart,
eqn (116), but the system matrices pertaining to the
present flexibility cell may alter the convergence be-
haviour. The propagation of differences between con-
secutive iteration cycles involves the individual prop-
erties of the discretized structure.

Application of the arguments that led to eqn (119)
in the stiffness cell context to the iteration scheme of
eqn (123) associated with the flexibility cell leads un-
der consideration of eqn (121) elementwise to

(δute)i+1 = f−ef−1
Ne (δute)i,

e = 1, · · · , nel. (124)

This points on eqn (38) for the individual element and
reveals the requirement of eqn (40) for each element
as a sufficient condition for convergence of the dis-
cretized structure. Since the finite element procedure
implies a solution for the displacement, the flexibility
cell participates via the secondary scheme of eqn (37)
with convergence properties inferior to those of the
stiffness cell, that enters the computation with the pri-
mary scheme of eqn (12).

For closer considerations with regard to the eigen-
value bounds of finite element matrices refer to the
early works [12, 13] and to the more recent [14].

8 Summary and conclusion
Two defective spring cell models deriving from
simplex finite elements are enriched to complete
the substitution. For this purpose, the springs, or
bars, which originally cover the diagonal entities of
the flexibility matrix and for the stiffness matrix of

the element are supplemented by displacements or
forces, respectively, which account for the discarded
off-diagonal entities of the element matrices. This
produces forms that are implicit in the force for the
flexibility approach, and implicit in the displacement
for the stiffness approach. Apart from this direct,
primary formalism, secondary schemes utilize the
force-displacement relation of the element and vice-
versa in interchanging the implicit terms.

The spectral norm of the operator matrices de-
fines the convergence indicators for an assessment of
the iteration schemes ensuing in the case of prescribed
force and of prescribed displacement. The procedures
are explored in detail for triangular configurations.
The rate of convergence decreases in departure from
the ideal constellation of no off-diagonal entities
(regular triangle, ν = 1/3). The range of convergent
solutions is seen larger for the primary schemes. That
is in terms of the force in the flexibility context, and
in terms of the displacement in the stiffness coun-
terpart. Accordingly, the flexibility concept appears
favourable for an iterative solution of the stress, and
the stiffness concept for an iterative solution of the
displacement, with consequences for the treatment of
the discretized structure. It is noted that The iteration
procedures along with the theoretical arguments
have been demonstrated with a numerical example.
Thereby the relevance of the convergence indicators
is confirmed as are the associated predictions.

The equation for the discretized structure as
set up for the enriched spring cell substitutes of
the finite element is inherently implicit. Since the
problem is stated in terms of the displacement, the
flexibility approach enters the iterative solution with
the secondary, deduced form, while the stiffness
approach participates directly with the primary form.
A sufficient condition for convergence of the iteration
process for the assembly requires convergence of
each constituing cell inividually. Thereby iteration
for completeness by the stiffness approach appears
rather favourable than by the flexibility approach. It
is recalled that the originally incomplete flexibility
cell in terms of the elastic energy is closer to the finite
element than its stiffness counterpart, however.

Acknowledgment: Maximilian Brodbeck car-
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